Friday, June 22, 2018

Is business looking up for engineers and architects?

More and more, architects and design engineers are looking to the ceiling for inspiration. Not staring upwards because they don’t know what to do next, but because they do. Today, they know that chilled beams can be an inspiring solution to providing excellent and economical comfort in the buildings they’re designing or renovating. 

For many years, cooling and heating in public spaces was provided by heating coils or AC units and vents, or by water-filled radiators. We’ve all seen — and probably heard — old, clunky systems with fans that sounded like aircraft taking off, or old water radiators that made strange gurgling or knocking noises. No more. Today, we have efficient, economical and above all comfortable climate control in our public spaces. Look up and find the chilled beam. 

The popularity of chilled beam heating and cooling systems really began in Australia and in Europe, based on their efficiency and efficacy. For one reason or another, we’ve been a little slower to adopt the system here in North America, even though it was first introduced almost a half century ago. Today, however, chilled beams are hot, even if that’s a strange way of putting it. 

Active or passive?

There are two main types of chilled beam — passive and active — and Titus makes both of these. Describing the difference in detail between active and passive can be complicated, but the short version is that it all depends on the way the systems treat airflow and the introduction and control of outside, fresh air. 

In active systems, fresh air is continuously supplied to the chilled beam itself for ventilation. The supply of ventilation air creates induction, which pulls room air over water coils in the chilled beam, cooling the air and providing comfort to the room. Passive chilled beams deliver comfort using natural convection and use a separate fresh air system for ventilation. Downward flows of cool air mix with ambient air. The warmed air in the room rises and is then cooled by the coil in the beam, and the cycle begins again. Fresh air is introduced using a separate air handling unit (AHU). 

There are also integrated chilled beam systems — such as the new Titus product, VENTUS LUX — which combine the advantages of an active chilled beam system with the benefits of LED lighting to deliver heating and cooling together with lighting in a single, economical package. The exciting new VENTUS LUX system is a breakthrough in chilled beam technology and is beginning to enjoy a great deal of interest from architects and engineers busy with new construction, particularly from those working with retrofit projects. 

Looking sideways, too

In addition to ceiling-mounted systems, we produce displacement chilled beam units that combine the best of chilled beam technology and displacement ventilation. These units are mounted at the floor level around building or room perimeters, and are particularly suited for zones where the heating load is heavy. Placement examples are high-density rooms or areas in schools or in healthcare facilities, delivering the highest levels of clean, comfortable air where the demand is greatest.

Comfort is key

As you may know, if there’s one thing that we, at Titus, like to obsess about, it’s occupant comfort. That’s what all our systems are designed to deliver. Of course, we also think about economy, efficiency, sustainability, and practicality. At the end of the day, though, our systems have to deliver comfort. If they don’t, then we’ve failed in our mission. Luckily, the good news is that we’ve succeeded in our declared goals for the past 70-plus years, and we’re still going from strength to strength. 

So with chilled beam systems, the options available to architects and engineers — and owners, too — are definitely looking up. It may have taken us a little time here in North America to get up to speed, compared with counterparts down under and across the pond, but we’re making up for lost time. Chilled beam systems are now delivering comfort to more and more public spaces in our neck of the woods. Plus, when it comes to developing the current and coming generation of chilled beam systems, Titus is right there at the forefront. 

For more information about our full range of chilled beam products, talk to your Titus representative, or explore our website. You may also enjoy our podcast — Titus Timeout — where you’ll find brief episodes that cover many things HVAC, including chilled beam.

Until next time,

Jenny Abney Sivie, LEED AP BD+C - Director of Advanced Business Development, Titus HVAC

This article as written can be found on LinkedIn's website For information on this topic, please contact Jenny Sivie at or Titus Communications at

Thursday, May 10, 2018

Top Five Benefits of HVAC and Lighting Control Integration

System integration results in increased energy efficiency, lower costs, and overall enhanced design

  • Explore chilled beam and lighting control integration
  • Understand the benefits of integrating HVAC and lighting controls

Figure 1a: This figure demonstrates how the air flows through a pendant-style integrated chilled beam and lighting system. Courtesy: Titus-HVACToo often, building systems are designed and constructed as disparate fragments that need to work together. Essential services, such as lighting, heating/cooling, and building controls, compete for limited space, resulting in congested ceilings. In recent years, some of these systems have broken the status quo and joined forces as one integrated component.

One such integration is chilled beams and lighting. The two have quite a bit in common: They are impacted by the number of occupants and daylight present in the room, they keep occupants comfortable and productive, and they try to do this using as little energy as possible. Here are the top five reasons why this concept of integrating chilled beams and lighting systems can be a good choice for some buildings.
  1. Higher energy efficiency
Chilled beams have inherent energy-efficient capabilities that are also present when integrated with lighting. Traditional HVAC systems use air, whereas chilled beams take advantage of water’s increased volumetric heat capacity to regulate a space’s temperature. It’s because of this that they can typically reduce HVAC energy consumption by up to 50% to 60% as compared with traditional systems.

But chilled beam systems, like other HVAC systems, must be designed properly to achieve full energy-savings potential. The key is to minimize the primary airflow rate to transfer as much of the space’s sensible cooling load onto the more efficient waterside of the system.

It is also important to maximize the induction rate. Here’s how it works: Active chilled beams have two distinct cooling components—the primary air and the water coil. Air induced from the space is cooled by the chilled-water coil and is affected by the inlet pressure and nozzle size (the smaller the nozzle, the greater the induction rate). Low-pressure zones are created around the jets of primary air as they exit the nozzles. The low-pressure zones induce room air over the chilled-water coil, which then cools the air and provides sensible cooling. A higher induction ratio shifts more of the cooling load onto the water coil, which can lead to greater energy savings. (See Figures 1a and 1b).
  1. Lower total lifecycle costs
Figure 1b: This figure shows the airflow through a recessed-style integrated chilled beam and lighting system. Courtesy: Titus-HVACBeyond lower energy costs for building owners, there are also reduced installation costs associated with integrated systems. When both a space’s lighting and HVAC systems are in one component, there’s decreased complication during install. A common perceived hurdle to adapting this kind of integrated system is who does the install, a mechanical contractor, an electrician, or the sheet metal contractor? The answer is that the mechanical contractor usually installs the beams first and the electrical contractor then makes the final electrical connections.

Integrated lighting and chilled-beam systems also have the potential to reduce building height. As chilled-beam systems are designed with around 70% less air than traditional all-air systems, the ductwork is considerably smaller, which often results in a slab-to-slab heat reduction of 12 in., leading to more flexibility in building construction.

Even beyond the initial installation, chilled beams continue to produce opportunities for savings. Maintenance costs decrease because chilled beams don’t have blowers, motors, filters, or condensate pumps. Instead, they rely on dry coils to operate, which only require cleaning once every 2 to 10 years, resulting in lower lifecycle costs.
  1. Better indoor environment for occupants
Figure 2: An integrated lighting and chilled-beam system offers a better indoor environment for occupants, lending itself well for potential use in critical environments, such as hospitals. Courtesy: Titus-HVACA comfortable indoor environment should be a high priority when choosing and designing a building’s HVAC system. Traditional systems can have unpredictable ventilation performance (where some areas of the building are overventilated and others are underventilated), difficulty mixing during part-load conditions, and imprecise humidity control.

Chilled beams are often paired with dedicated outdoor-air systems (DOAS), which ensure all zones of the building receive correct ventilation and dehumidification at all times. Chilled beams allow the sensible cooling (and heating) to be decoupled from the ventilation and dehumidification requirements of the building. Precise control of these three elements reduces energy consumption, as over-ventilation and dehumidification is far less likely. They also typically operate at a constant volume, which allows for better mixing and an even temperature across the room.
  1. More enhanced aesthetics 
HVAC is traditionally thought of, from a design standpoint, as a system that must be incorporated out of necessity and not because of what it adds visually. The integration of lighting and chilled beam reduces the visual mass of the systems in the ceiling plane, allowing for a less cluttered look without sacrificing a quality HVAC system. The product itself can have a cleaner look, as well, with sleek designs that are seamlessly incorporated into ceiling plans. Some systems are developed with input from architects on what design aspects are appealing to building owners.
  1. Future potential for integration and innovation
One of the most exciting parts of this system integration is that it’s only the start of system integration. Future possibilities will expand beyond just lighting and HVAC to encompass a range of possibilities, from building safety requirements like fire suppression, security systems, and carbon monoxide detectors to other building benefits like occupancy sensors and sound bars for intercom systems or other sound-projection needs. Not only will the products integrate, but the associated controls will as well.

Figure 3: Using a pendant-style integrated chilled beam and lighting system, this rendering of an office space shows the cleaner look of an integrated system, as well as the potential for higher ceilings due to eliminated ductwork. Courtesy: Titus-HVACFor example, occupancy sensors can monitor when and how many people are in a space to adjust the load setting accordingly or additional sensors can monitor the strength of sunlight and lower lights as needed to increase energy efficiency. Eventually, these will also integrate into building control systems and the Internet of Things (IoT) to further allow different systems to communicate and work together.

Future innovations like these can lead to additional efficiencies in installation costs because these innovations will prioritize a building’s design and function as a whole rather than approaching each system individually.

Considering humans spend 90% of their time indoors, it makes sense that our building needs have evolved and our spaces have become smarter, thanks in part to IoT. Our building systems need to keep pace, too. Consider a holistic building systems approach that integrates multiple components to optimize performance and create the best possible indoor environment.
This article as written can be found on Consulting-Specifying Engineers website For information on this topic, please contact Nick Searle at or Titus Communications at

Monday, March 19, 2018

Diffuser Sound - Part I / Making the Best Selection for Your Occupant Space

The acoustical environment created by an HVAC system may or may not be a critical issue for tenant or building owner, but understanding the sound data published by manufacturers is necessary in order to make an appropriate diffuser selection. Since diffusers are the system components in closest proximity to the occupants, they must be selected properly in order to produce suitable room sound levels.

The first thing to understand is the meaning of the NC numbers that manufacturers publish. NC stands for noise criteria. This is a single number that assigns an overall room sound level based on relative loudness and the speech interference level of a given sound spectrum. NC charts plot sound frequency (Hz) versus sound pressure level (dB). Sound pressure is the sound level measured in a space after some amount of sound power
has been absorbed by the environment.

Here are some recommended sound levels for common applications as found in the ASHRAE Handbook of HVAC Applications:

  • NC20 - Concert and Recital Halls
  • NC25 – Places of Worship, Music Rooms
  • NC30 - Conference Rooms/Hospital Patient Rooms/Hotel Rooms/Meeting Rooms/Courtrooms with Unamplified Speech/Classrooms
  • NC35 - Operating Rooms/Courtrooms with Amplified Speech
  • NC40 - Open Plan Offices/Lobby Areas
  • NC45 - Gymnasiums

NC15 is generally accepted to be total silence or the threshold of hearing for healthy adults. You might wonder why some manufacturers publish sound levels less than NC15. The purpose of doing this is to allow multiple products that may be individually inaudible to be added together to predict a combined sound level.

NC30 is typically the lowest sound level that can be achieved in most buildings without going to special lengths to sound proof the structure. NC30 is fairly easy to achieve in a suburban or rural setting, but much more difficult in an urban or industrial environment. Spaces requiring sound levels less than NC30 include broadcast and recording studios as well as opera and concert halls.

Although it’s been said that a noisy diffuser is good diffuser because you can hear it working, that’s not true. There are many issues that can cause diffuser noise to be audible including inlet conditions, neck-mounted dampers, and undersized or misapplied devices. Diffusers tend to make their highest sound levels in octave bands 4 (500 Hz), 5 (1000 Hz), and 6 (2000 Hz). These are known as the “speech interference bands” because they are the same frequencies we use when speaking. A noisy diffuser would therefore create a poor speaking environment and should be avoided.

The best way to avoid noisy diffusers is to select them for sound levels at least 10 NC points lower than the desired room sound level. This allows the diffusers to disappear into the background without contributing to the room sound level. As a general rule, diffusers should not be selected for sound levels greater than NC25 for any occupied spaces other than industrial applications.

For information on this topic/product, please contact Randy Zimmerman at or Titus Communications at

Wednesday, February 14, 2018

Titus AHR Booth 2018

Trenton Yarbrough, national sales manager, reviews two innovative products in the Titus booth from the AHR EXPO held in Chicago.

Thursday, January 11, 2018

Surface Mounting Options for Ceiling Diffusers

One of the more frequently asked questions we receive in application engineering is in regards to surface mounting Titus diffusers. When a ceiling grid is not present, surface mounting is specified and the installation questions arise. Linear diffusers are available with concealed mounting, square and rectangular diffusers with square or round inlets are not.

The most important thing to know about surface mounting is that it normally requires additional framing to which the units will be secured. We often receive calls for mounting instructions after the sheetrock has been installed which is too late to provide framing without removing the installed surface.
Titus mounting frames make installation of grilles, diffusers and other ceiling components in plaster and sheet rock ceilings as simple as inserting them in a standard T-bar type ceiling.

Framing requirements will vary from one job to the next, but there are some general guidelines and terminology we use.

Obviously installing screws in the face of a diffuser will work as it does for grilles but the duct return flanges behind diffuser edges are generally not available to provide a secure mounting base for screws. Also, many surface mount frames do not have a flat surface nor is there a screw hole fastening option available. Furthermore, screw fastening certainly does not enhance the aesthetics of the installed diffuser.

All sheetrock is mounted to ceiling joists. Joists are usually parallel to each other and spaced at two to three feet apart depending on local building codes, and in most cases, the framing for the diffuser can be mounted to the top of, and perpendicular to the joists. Screws are then used to mount the back pan to the framing. Framing members should be centered on the diffuser location to allow sufficient clearance for the diffuser inlet and associated duct. Additional care must be taken so as to avoid any protrusions or features that will occupy the space necessary for the framing on the rear side of the diffuser. Framing should also be at a depth that will allow the diffuser to firmly seat against the sheet rock. Most diffuser back pan heights are less than the depth of the joist. The sheet rock or ceiling surface is installed into an opening provided for the diffuser.

The diffuser core should be removed prior to installation to allow for screws to be installed in the top of the back pan transition; this is the flat portion on the rear of the back pan. Screws are then used to secure the back pan to the framing. It is helpful to use washers to prevent the screw heads from being driven through the back pan if the framing is not flush to the rear of the pan. In most cases the screws can be placed in a manner to not be visible from the occupied space after the diffuser core or face is re-installed.

As an alternative to the framing process, and one that we suggest if the ceiling surface has been installed without prior framing for the diffuser mounting, is to use our rapid mount frame. The TRM frame can be installed in the space between the joists following the installation of the ceiling.

The TRM replicates a standard ceiling grid module and a lay-in (type 3) frame diffuser. The diffuser can then be laid in the TRM frame. The TRM frame does add a border to the finished appearance of the diffuser, but also can be utilized as an access port to the space above the ceiling by simply pushing the diffuser up and out of the opening.

While the TRM does represent additional diffuser cost, the reduced labor requirement and flexibility of the installation sequence offers a distinct advantage.

The TRM is available in steel and aluminum and is ordered as a separate line item. Remember, when using the TRM frame, the (type 3) diffuser frame must be used instead of the (type 1) diffuser frame.

For information on this topic/product, please contact Mark Costello at or Titus Communications at

Monday, December 4, 2017

Laboratories Warm Up to Chilled Beams to Save Energy, Eliminate Reheat

Laboratories are not known for their energy efficiency. These spaces can consume up to 10 times more energy than office buildings, leading facility managers and engineers to prioritize finding ways to reduce energy consumption and operating costs – without sacrificing efficiency. One way to do that is by using chilled beam systems, which have grown increasingly popular in the U.S. in the last decade. Chilled beams have proven to be viable alternatives to traditional Variable Air Volume (VAV) systems, demonstrating energy savings upwards of 20% in laboratories compared to VAV Reheat.

To better understand how and why chilled beams are effective in laboratories, let’s examine the usage of these systems, strategies for effective design and operation in laboratory environments.

How Chilled Beams Work
There are two types of chilled beams, passive and active.

Passive chilled beams cool spaces using natural convective forces and include a heat exchange coil in an enclosure that is suspended from the underside of the building structure. Chilled water flows through the coil and cools the surrounding warm air; the denser cool air falls back into the space. Passive beams require separate air diffusers to carry dehumidified ventilation air into the space, usually at the floor level. For this reason, they are rarely, if ever, used in laboratories.

Active chilled beams rely on pretreated primary air delivered from central air-handling units (AHU’s) to pressurize a series of small induction nozzles within the chilled beam unit. These nozzles create jets of air causing room air to be induced across a coil where flowing water heats or cools this (secondary) air.

Both passive and active beams are designed to provide sensible cooling only with the latent cooling (i.e. space dehumidification) being accomplished by the central AHU’s. Depending on the lab use and loads, the primary air is delivered to the active chilled beams as constant or variable volume, with the cooling/heating output being controlled by either two position or modulating control valves to vary the water flow through the integral coils. Chilled beams can be integrated into suspended ceiling systems or hung from the structural slab for exposed use.

Because chilled beams provide most of a space’s sensible cooling, the central air handling system can be much smaller than usual since its primary purpose is to provide the ventilation air and latent cooling to the space. This effectively decouples the sensible cooling from the ventilation requirements. And since chilled beams have no moving parts, maintenance is limited to infrequent cleaning of the coils.

Laboratory HVAC Energy Use

The ventilation requirements for laboratories are different from the needs of a typical office building. Minimum ventilation rates are dictated by safety requirements rather than cooling or heating loads, while maximum rates are determined by either the make-up air requirements for the fume hoods or the sensible cooling requirements of the space (if the equipment cooling load is high). There are special requirements for laboratories where chemicals or gases as present as well. They cannot use recirculating AHU’s, so the ventilation air must be 100% outdoor air at all times.

Overall, these parameters can result in an air system sized for ventilation air changes rates from 6-to-12 or more, depending on the lab use and equipment loads.

A traditional "all-air" system will typically deliver cool air to the building at around 55°F when there is demand for OA dehumidification, or to satisfy the sensible cooling requirements of the highest load lab in the building. This often results in a mismatch of ventilation air and cooling requirements, forcing the zone VAV boxes to reheat the cooled air to prevent over-cooling the space when sensible loads are low. Even more reheating occurs when ventilation air is increased to provide make-up air for the fume hoods, resulting in lower efficiency.

And decreased efficiency hurts the bottom line: Energy studies have shown that cooling and reheating air can account for as much as 20% of the total HVAC energy costs in laboratories.

Eliminating Reheat and Saving Energy
Active chilled beams can help boost energy efficiency in a number of ways.

One is by eliminating most of the reheat energy resulting from decoupling ventilation and cooling demands. With active chilled beams the ventilation air can be delivered at a warmer temperature through a 100% outside air AHU, commonly known as a dedicated outdoor air system (DOAS). With the DOAS primary air set to around 65-70°F space overcooling is far less likely to occur, even in labs calling for high volumes of make-up air for the fume hoods. The water coils within the chilled beams provide cooling or heating capacity on a zone-by-zone basis. During OA dehumidification hours, the DOAS unit removes moisture by cooling the air to 55°F or below and is reheated with energy recovered from the exhaust air using enthalpy wheels, heat pipes or run around coils.

Another is through using water to transport heat, resulting in an air system size reduction of 60 percent compared to VAV Reheat. This feature reduces overall fan energy consumption and is ideal for laboratories with high sensible loads and low fume hood densities.

The increased efficiencies associated with chilled beams also help laboratories maximize their space. The reduced reheat and boosted transport efficiencies of water mean the main plant items (chillers, boilers and AHU’s) can be smaller than with a traditional system’s. The duct distribution system is also more compact, which reduces service congestion in the ceiling interstitial. Finally, a smaller system can translate into lower first costs for an HVAC system compared to VAV Reheat.

There is a challenge with using chilled beams in labs, however: the need for dual chilled water temperatures. Specifically, a low temperature circuit (LTCHW, 40-45°F) for the DOAS and medium temperature circuit (MTCHW, 56-58°F) for the active chilled beams. The most common strategy is to design a closed secondary loop separated by a plate and frame heat exchanger, ensuring that the LTCHW cannot accidentlly find its way into the active chilled beams. That could potentially cause condensation on the coils.

Building Humidity Control

The best chilled beam system designs equip the building with a small number of room dew point sensors. This allows the building management system to monitor the humidity across the building and reset the DOAS air dew point or reschedule the MTCHW loop temperature if the space dew point rises above a preset temperature. Facilities engineers can use the room dew point sensors to precisely control the amount of OA latent cooling at the DOAS unit to further reduce energy costs, an operational strategy that is more difficult to accomplish with a VAV Reheat system. Despite being used in early system designs; pipe mounted condensation sensors are rarely used today since room dew point monitoring provides enough advance warning of potential condensation.

Chilled Beams Misconceptions

Despite growing in popularity over the last 10+ years, there are still a number of persisting myths and misconceptions about chilled beams. For instance, despite there being several successful installations in the likes of Florida, Hawaii and even the Caribbean, there is still hesitancy among designers and owners to use the system in humid climates because of condensation concerns. The reality is the system can be used in any building where the space humidity can be controlled; however, energy savings will not be realized in applications where the internal latent gains are high, such as wet labs. In other cases, engineers may be reluctant to consider active chilled beams because they are simply unfamiliar with the design of these systems.

Cost is also a concern. Mechanical contractors unfamiliar with chilled beams will be wary of underpricing a system they have never previously installed, but several case studies have shown chilled beams have been installed cost competitively with traditional systems.


It didn’t happen overnight, but a larger number of engineers and facility managers have realized – and are realizing -- the advantages chilled beam systems can offer to laboratory applications, specifically in terms of energy and space savings. Debunking misconceptions and educating laboratory owners on the construction of and design using chilled beams is the first hurdle to overcoming barriers to adoption. Then it’s about showing what the technology can do. Those who have installed these systems have realized greater energy efficiency, substantial cost savings and improved performance.

For information on this topic, please contact Nick Searle at or Titus Communications at